

Project:	
Location:	
Cat.No:	
Type:	
Lamps:	
Notes:	

Complete fixture consists of Reflector Trim \& Frame-In Kit. Select each separately

Reflector Trim	Frame-In Kit	Lamp		
309STX	Stainless Steel Plated	Remodeler	300MRSPX	50W MR16
309WHX	White Paint	Remodeler	3401MREX	42W MR16
		Remodeler	300ESX	50W ES/ESD16 (GZ10)
	Non-IC	302MRSPX	50W MR16	
	Non-IC	302MREX	50W MR16	
	Non-IC	302ESX	50W ES/ESD16 (GZ10)	
		IC	302MRIC9SPX	50W MR16
		IC	302ESICX	50W ES/ESD16 (GZ10)
				302MRAICEX/302MRAICSPX

Features

1. Housing: 25 ga galvanized steel
2. Residence Mounting Clip: Factory-installed; zinc plated spring steel; free-hand installation.
3. Aperture Plate: Die-formed 24 ga. steel. Inner shield, welded to aperture plate; black finish.
4. Adjustable Lampholder Support: 27ga. steel ; Rotates 358° horizontally and 0° to 40° vertically.
5. Mounting Clips (2): 24ga. spring steel, zinc plated. Provide easy snap-in / snapout action.
6. Lamp Guard: 2" (51mm) dia. borosilicate glass.

Frame-In Kit

Note: For complete Frame-In Kit specifications, see 300 frame specification sheets.
Labels:
CSA , UL Suitable for damp locations.

309X LytePoints 3 3/4"

Adjustable Slot

(FC) is initial foctandes at center of beam. Beam: lengit (L) and team width (W) are to whe e the candlepuwer is red scad io 50% of zenter beein candelapower. CBC P is center beam candiepower. (C) is distance to the center of the bear w.
Lamp data shown is typical, and is based en bare lamp photomexics. Contact Iamp manuiaceurers for availability and pe formence

\section*{30° Alming angle} | 30 |
| :--- |
| d |
| d | MR-16 LOW VOLTAGE HALOGEN BI-PIN LAMPS

	1	8200	3100	$\begin{aligned} & 7^{\circ} \\ & 10^{\prime} \\ & 7^{\circ} \\ & E^{\circ} \end{aligned}$	$\begin{aligned} & \hline 67 \\ & 82 \\ & 89 \\ & 39 \\ & 32 \end{aligned}$	$\begin{aligned} & \hline 0.9^{\prime} \\ & 1.2^{\prime} \\ & 1.60^{\prime} \\ & 2 . \end{aligned}$	$\begin{aligned} & 0 \mathrm{e}^{\prime} \\ & 12 \\ & 1 . \epsilon^{\prime} \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline{ }^{6} \\ & 9^{\prime} \\ & 12 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.55^{5} \\ & 5.5 \\ & 6.9 .9 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 198 \\ & 66 \\ & 37 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 15 \\ & 2.0^{\prime} \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0^{9} \\ & 1.3 \\ & 1.7 \\ & 2.7 \end{aligned}$	$\frac{2}{3}$ 3 4 5	$\begin{aligned} & 3.5 \\ & 5.2 \\ & 6.9^{\prime} \\ & 8.7 \end{aligned}$	$\begin{aligned} & 256 \\ & 114 \\ & 64 \\ & 41 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 20^{\circ} \\ & 2.5^{\prime} \end{aligned}$	$\begin{aligned} & 0.5^{\prime} \\ & 0 . \mathbf{x}^{\prime} \\ & 1.0 \\ & 1 .{ }^{\prime} \end{aligned}$	$\begin{gathered} 4^{4} \\ 8 \\ 8 \\ 9^{0} \\ \hline \end{gathered}$	$\begin{gathered} 9.0^{\circ} \\ 6.00^{\circ} \\ 8.0^{2} \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 181 \\ & 81 \\ & 45 \\ & 29 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 07^{\prime} \\ & 1.0^{\prime} \\ & 1 . \mathbf{y}^{\prime} \\ & \hline \end{aligned}$
$\underset{\substack{\text { 20WMMR-16 } \\ \text { NSP IESXi }}}{\text { nen }}$	$\bigwedge_{13^{\circ}}$	3606	3000	$\begin{aligned} & 6_{8}^{8} \\ & 8_{0}^{\prime} \\ & 0_{1}^{\prime} \end{aligned}$	$\begin{aligned} & 103 \\ & 56 \\ & 36 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.8 \\ & 2.3 \\ & 2 . \end{aligned}$	$\begin{aligned} & .4^{\prime} \\ & 18^{\prime} \\ & 2.3^{\prime} \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ 9^{\prime} \\ 11 \end{gathered}$	$\begin{aligned} & 2.9^{\prime} \\ & 4.0^{\prime} \\ & 5.2 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 94 \\ & 48 \\ & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & 1.5^{\prime} \\ & 2.1 \\ & 2.4^{\prime} \\ & 34^{\prime} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.8 \\ & 1.8 \\ & 2.4 \\ & 2.9 \end{aligned}$	7 4 4	$\begin{aligned} & 3.5 \\ & 5.2 \\ & 6.9 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 113 \\ & 50 \\ & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 1.99 \\ & 2.90 \\ & 3.9 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.4 \\ & 18 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 3^{2} \\ & 5 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \\ & 9.0^{\circ} \end{aligned}$	$\begin{aligned} & 141 \\ & 51 \\ & 26 \\ & 16 \end{aligned}$	$\begin{aligned} & 144^{2} \\ & 2.3 \\ & 3.2 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0^{\prime} \\ & 1.6^{\prime} \\ & 23 \\ & 2.9 \end{aligned}$
	A	535	4090	3 4	$\begin{aligned} & 131 \\ & 58 \\ & 33 \\ & 21 \end{aligned}$	$\begin{aligned} & 1.5^{\prime} \\ & 2.2^{\prime} \\ & 2.9^{\prime} \\ & 3 . \mathbf{m}^{\prime} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.2 \\ & 2.9 \\ & 3.6^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.2^{\prime} \\ & 1.7 \\ & 7.3 \\ & 2.9^{\prime} \end{aligned}$	$\begin{aligned} & 85 \\ & 33 \\ & 21 \\ & 14 \end{aligned}$	$\begin{aligned} & 2.0^{\prime} 0^{\prime} \\ & 3.0^{\prime} \\ & 41^{\prime} \end{aligned}$	$\begin{aligned} & 1.7^{\prime} \\ & 2.5 \\ & 3.4^{\prime} \\ & 4.2^{\prime} \end{aligned}$	2 3 4 4	$\begin{aligned} & 17 \\ & 35 \\ & 5.2 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 66 \\ & 16 \\ & 7 \\ & 7 \end{aligned}$	$\begin{gathered} 4.8 \\ 9.7 \\ 14.5 \\ 19.3 \end{gathered}$	$\begin{aligned} & 75^{\prime} \\ & 29^{\prime} \\ & 4.4^{\prime} \end{aligned}$	$\begin{aligned} & \hline 2^{2} \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2.0^{\circ} \\ & 3.0^{\prime} \\ & 4.0^{\prime} \\ & 5.0 \end{aligned}$	$\begin{aligned} & 46 \\ & 21 \\ & 21 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 5.0 \\ & 6.7 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3 . \\ & 3.1 \\ & 5.1 \end{aligned}$
$\underset{\substack{36 W M R-18 \\ N S P(E R B 1}}{\sum \sum}$	${\underset{12}{ }}_{M_{2}}$	8700	4000	7 10 13 16 16	$\begin{aligned} & \hline 178 \\ & 87 \\ & 91 \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.1^{1} \\ & 2.7 \\ & \hline .4 \end{aligned}$	$\begin{aligned} & 1.5^{\prime} \\ & 2.1 \\ & 27 \\ & 3.4 \end{aligned}$	$\begin{aligned} & \mathbf{F}^{\prime} \\ & 9^{\prime} \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5^{\prime} \\ & 5.2^{\prime} \\ & 0.8^{\prime} \\ & 8.7 \end{aligned}$	$\begin{aligned} & 157 \\ & 70 \\ & 34 \\ & 25 \end{aligned}$	$\begin{aligned} & 17 \\ & 25^{\prime} \\ & 3.4 \\ & 42 \end{aligned}$	$\begin{aligned} & 1.5^{\prime} \\ & 2.2 \\ & 29^{2} \\ & 3.5 \\ & \hline \end{aligned}$	7 7 7 4 5	$\begin{aligned} & 35 \\ & 5.2 \\ & 6.9 \\ & 6.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 272 \\ & 121 \\ & 63 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.6^{\prime} \\ & 3.5 \\ & 4.3^{\prime} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3^{\prime} \\ & 17 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 6 \\ & 8 \\ & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 80 . \\ & 10.0 \end{aligned}$	$\begin{aligned} & 192 \\ & 85 \\ & 48 \\ & 31 \end{aligned}$	$\begin{aligned} & 1.7^{\prime} \\ & 2.8^{\prime} \\ & 3.4^{\prime} \\ & 4.3^{\prime} \end{aligned}$	$\begin{aligned} & 1.2^{\prime} \\ & 1.8^{\prime} \\ & 2.0^{\circ} \\ & 3.0^{\circ} \end{aligned}$
$\sum_{\substack{\text { 35WMR MR } 16 \\ \text { SP iFRA) }}}^{\text {nen }}$	$A_{2 j}$	3900	4000		$\begin{aligned} & \hline 108 \\ & 51 \\ & 39 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.8 \\ & 3.5 \\ & 4.8^{\prime} \end{aligned}$	$\begin{aligned} & 2.1^{\prime} \\ & 2.8^{\prime} \\ & 3.5^{\prime} \\ & 4 .{ }^{\prime} \end{aligned}$	$\begin{aligned} & \hline \mathbf{5}^{\prime} \\ & 7 \\ & \mathbf{y}^{\prime} \\ & \mathbf{1 1}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & \hline 4 C^{2} \\ & 5 y^{\prime} \\ & 6{ }^{\prime} \end{aligned}$	$\begin{aligned} & 101 \\ & 52 \\ & 31 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 24^{\prime} \\ & 3.3 \\ & 4.3 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 22^{\prime} \\ & 2.9 \\ & 3.7 \\ & 4.5^{\prime} \\ & \hline \end{aligned}$	7 7 3^{\prime} 4^{\prime} 5^{\prime}	$\begin{aligned} & 3.5^{\prime} \\ & 5.2^{\prime} \\ & 8.7 \end{aligned}$	$\begin{aligned} & 122 \\ & 54 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.7 \\ & 6.2 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 1,4 \\ & 2.1 \\ & 28 \\ & 3 . \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3^{\prime} \\ & 5 \\ & 7^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 5.0 \\ & 7.0 \\ & 9.0^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 153 \\ & 55 \\ & 28 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.0^{\prime} \\ & 5.1^{\prime} \\ & 6.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 2.5 \\ & 3.5^{\prime} \\ & 4.5 \\ & \hline \end{aligned}$
	A	1 ¢VJ	4000	$\begin{gathered} 6 \\ 8^{\prime} \\ 10 \end{gathered}$	$\begin{aligned} & 100 \\ & 44 \\ & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.8 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \hline 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5.8^{\prime} \\ & 7.3 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 29 \\ & 40 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 42 \\ & 21 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 . \mathrm{C}^{\prime} \\ & 5.1^{\prime} \\ & 7.1^{\prime} \\ & 9 .{ }^{\prime} \end{aligned}$	$\begin{aligned} & 2.5^{\prime} \\ & 4.2^{\prime} \\ & 5.8^{\prime} \\ & 1.6^{\prime} \\ & \hline \end{aligned}$	\% 2^{\prime} 3 3^{\prime} 4	$\begin{aligned} & 1.7 \\ & 3.5 \\ & 6.2^{2} \\ & 6.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 50 \\ & 22 \\ & 33 \\ & \hline \end{aligned}$	$\begin{gathered} 4.8 \\ 9.7 \\ 14.5 \\ 19.3 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.9^{\prime} \\ & 4.4 \\ & 5 . \mathbf{B}^{\prime} \end{aligned}$	$\begin{aligned} & 3^{\prime} \\ & 4^{\prime} \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0^{\prime} \\ & 4.0 \\ & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & 35 \\ & 23 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 6.7 \\ & 8.4 \\ & 10.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.11^{\prime} \\ & 4.1^{\prime} \\ & 5.1 \\ & 8.2^{\prime} \end{aligned}$
	$\underset{10}{A}$	11500	4000	6 12 18 20	$\begin{aligned} & 180 \\ & 80 \\ & 45 \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.1 \\ & 2.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.4^{\circ} \\ & 2.1 \\ & 28 \\ & 3.5^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 9 \\ & 93 \\ & 96^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.0^{\prime} \\ & 6.4 \\ & 7.5 \\ & 9.2^{\prime} \end{aligned}$	$\begin{aligned} & 152 \\ & 162 \\ & 44 \\ & 43 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.61 \\ & 2.3 \\ & 3.0 \\ & 3.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \\ & 2.8 \\ & 3.2 \\ & \hline \end{aligned}$	3 4 4 5 8	$\begin{array}{r} \hline 57^{\prime} \\ 6.9 \\ 8.7^{\prime} \\ 10.4^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 160 \\ & 960 \\ & 58 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2 . \mathbf{l}^{\prime} \\ & 3.6 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.7 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \\ & 9 \\ & 9 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & 0.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 183 \\ & 83 \\ & 50 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.2^{\prime} \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 17 \\ & 2.2 \\ & 2.7 \\ & \hline \end{aligned}$
	1	3500	4000	$\begin{aligned} & \hline 6 \\ & 8^{\prime} \\ & 10 \\ & 12 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & \hline 97 \\ & 55 \\ & 35 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.5^{\prime} \\ & 4.4{ }^{\prime} \\ & 5.3 \end{aligned}$	$\begin{aligned} & \hline 27^{\circ} \\ & 3.5^{\prime} \\ & 4.4^{\prime} \\ & 5.3^{2} \end{aligned}$	$\begin{gathered} 5 \\ 7 \\ 9 \\ 9 \\ \hline 11 \end{gathered}$	$\begin{aligned} & 2.9 \\ & 4.0 \\ & 5.9 \\ & 6.4 \end{aligned}$	$\begin{aligned} & \hline 91 \\ & 46 \\ & 28 \\ & 19 \end{aligned}$	$\begin{aligned} & 3.0 \\ & \hline 2 . \\ & 5.4^{\prime} \\ & 6.6^{\prime} \end{aligned}$	$\begin{aligned} & 20^{\prime} \\ & 36^{\prime} \\ & 46^{\prime} \\ & 5.6^{\prime} \end{aligned}$	2 3 3^{\prime} a^{\prime} 5	$\begin{aligned} & 3.5 \\ & 57 \\ & 6.9 \\ & . .^{\prime} \\ & 8.7^{\prime} \end{aligned}$	$\begin{aligned} & 100 \\ & 49 \\ & 27 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.2 \\ & 8.2 \\ & 8.3 \\ & 10 . \mathbf{c}^{\prime} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 27 \\ & 7.5 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline \ddot{3} \\ & \mathbf{5} \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 50 \\ & 70 \\ & 9.0 \end{aligned}$	$\begin{array}{r} 137 \\ 49 \\ 23 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 47 \\ & 6.5 \\ & 8.4^{\prime} \end{aligned}$	$\begin{aligned} & 1.9^{\prime} \\ & 3.1^{\prime} \\ & 4.5^{\prime} \\ & 5.5^{\prime} \end{aligned}$
$\sum_{\substack{37 W M R 16 \\ \operatorname{RR}(F L)}}^{S}$	Λ	2059	4000	$\begin{aligned} & 4^{\prime} \\ & 6 \\ & 8^{\prime} \\ & 10 \end{aligned}$	$\begin{aligned} & 178 \\ & 57 \\ & 32 \\ & 21 \end{aligned}$	$\begin{aligned} & \hline 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5 . B^{\prime} \end{aligned}$	$\begin{aligned} & \hline 2.9^{\prime} \\ & 4.4 \\ & 5.8^{\circ} \\ & 7.3^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 3^{\prime} \\ & 5^{\prime} \\ & 7^{\prime} \\ & 9^{\prime} \end{aligned}$	$\begin{aligned} & 171 \\ & 2.9 \\ & 4.0 \\ & 5.2 \end{aligned}$	$\begin{gathered} 148 \\ 53 \\ 27 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 30^{\prime} \\ & 5.1 \\ & 7.1 \\ & 9.1 \end{aligned}$	$\begin{aligned} & \hline 25 \\ & 4.2 \\ & 5.9 \\ & 7.6 \\ & \hline \end{aligned}$	2 3 4	$\begin{aligned} & \hline 1.7^{\prime} \\ & 3.5^{\prime} \\ & 5.2^{\prime} \\ & 6.9^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58 \\ & 64 \\ & 28 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 48^{\prime} \\ & 9.7^{\prime} \\ & 14 . \mathbf{I}^{\prime} \\ & \hline 19.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 2.9^{\prime} \\ & 4.0^{\prime} \\ & 5.8^{\prime} \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 40 \\ & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 51 \\ & 45 \\ & 29 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0^{\prime} \\ & 6.7 \\ & 8.4 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 3.11 \\ & 4.1 \\ & 3.1 \\ & 6.2 \end{aligned}$
$\frac{\mathrm{A}}{\substack{\text { 42WMA } \\ \text { VNSP }([Z M)}}$	\int_{9}^{\prime}	13,190	3500	$\begin{aligned} & 8^{\prime} \\ & 12 \\ & 1 \delta^{\prime} \\ & 20^{\prime} \end{aligned}$	$\begin{aligned} & 205 \\ & 31 \\ & 51 \\ & 31 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.9 \\ & 2.5 \\ & 31 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.9 \\ & 2.5 \\ & 3 . \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 13^{\circ} \\ & 18^{\circ} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.8 \\ & 75 \\ & 9.2^{\prime} \end{aligned}$	$\begin{aligned} & 176 \\ & 85 \\ & 51 \\ & 33 \end{aligned}$	$\begin{aligned} & 1.5^{\prime} \\ & 2.1^{\prime} \\ & 2.7 \\ & 3 . \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1.3 \\ 1.8 \\ 24 \\ 2.4 \\ 2.9 \end{array} \end{aligned}$	3 4 4	$\begin{aligned} & 5.7 \\ & \hline 6.9 \\ & 8.7^{\prime} \\ & 10.4 \end{aligned}$	$\begin{aligned} & 182 \\ & 102 \\ & 66 \\ & 65 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 26^{\circ} \\ & 32^{\circ} \\ & 38^{\circ} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.3^{\circ} \\ & 1.5 \\ & 1.9 \end{aligned}$	¢ 7 7 9^{\prime} 11	$\begin{gathered} 5.0 \\ 70 \\ 9.0^{\circ} \\ 11.0^{\circ} \end{gathered}$	185 95 57 38	$\begin{aligned} & 6.6 \\ & 22 \\ & 28^{\prime} \\ & 3.5^{\prime} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1 . \\ & 2.0 \\ & 2.4 \end{aligned}$
	$N_{27^{\circ}}$	2403	48061	$\begin{gathered} \hline{ }^{\prime} \\ 6^{\prime} \\ 8^{\prime} \\ \hline 0^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 67 \\ & 38 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9^{\prime} \\ & 2.9^{\prime} \\ & 38^{\prime} \\ & 4.8^{\prime} \end{aligned}$	$\begin{aligned} & 1.9^{\prime} \\ & 2.9 \\ & 3.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 3^{\prime} \\ & 5^{\prime} \\ & 7^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,7 \\ & 7.9 \\ & 40^{\prime} \\ & 3.2^{\prime} \end{aligned}$	$\begin{aligned} & 173 \\ & 82 \\ & 32 \\ & 19 \end{aligned}$	$\begin{aligned} & 2.0^{\prime} \\ & 3.3^{\prime} \\ & 46^{\prime} \\ & 59^{\prime} \end{aligned}$	$\begin{aligned} & 17 \\ & 28 \\ & 39 \\ & 39 \\ & 59 \end{aligned}$	${ }_{3}^{2}$	$\begin{aligned} & 1.1 \\ & 35 \\ & 5.2 \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 75 \\ & 33 \\ & 19 \end{aligned}$	$\begin{aligned} & 2 飞 \\ & 4.0^{\circ} \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.9^{\prime} \\ & 1.9^{\prime} \\ & 2.9^{\prime} \\ & 3.6^{\prime} \end{aligned}$	3 4 5 5 6	$\begin{aligned} & 30 \\ & \hline 3 . C^{\prime} \\ & 5 . .^{\prime} \\ & 5.0^{\prime} \end{aligned}$	$\begin{aligned} & 94 \\ & 53 \\ & 34 \\ & 24 \end{aligned}$	$\begin{aligned} & 3.11^{2} \\ & 4.1 \\ & 5.1 \\ & 6.1^{\prime} \end{aligned}$	$\begin{aligned} & 2.0^{\prime} \\ & 27 \\ & 3.4^{\prime} \\ & 4 .{ }^{\prime} \end{aligned}$
	$\prod_{14^{\circ}}$	16,290	4000	$\begin{aligned} & e^{\prime} \\ & 12 \\ & 13 \\ & 23 \end{aligned}$	$\begin{aligned} & 159 \\ & 71 \\ & 40 \\ & 26 \end{aligned}$	$\begin{aligned} & 2.0^{\prime} \\ & 2.9^{\prime} \\ & 3.8^{\circ} \\ & 4.9^{\prime} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.9^{\prime} \\ & 3.9 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7^{\prime} \\ & 10^{\circ} \\ & 13^{\circ} \\ & 15^{\prime} \end{aligned}$	$\begin{aligned} & 4.0^{\prime} \\ & 5.8^{\prime} \\ & 7.5 \\ & 9.2^{\prime} \end{aligned}$	$\begin{aligned} & 135 \\ & 56 \\ & 39 \\ & 28 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.3 \\ & 4.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 20 \\ & 2.8 \\ & 3.7 \\ & 3.5 \end{aligned}$	3 4 4 5	$\begin{aligned} & 52^{\prime} \\ & 6.9 \\ & 8.7 \\ & 10.4 \end{aligned}$	$\begin{aligned} & \hline 142 \\ & 80 \\ & 51 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.1^{\prime} \\ & 5.1 \\ & 6.2^{\prime} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.5 \\ & 2.9 \end{aligned}$	¢ 1 9 9 1	$\begin{gathered} 5.0 \\ 7.0 \\ 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 144 \\ & 74 \\ & 45 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	1.7 2.4 3.1 3.8 1
$\frac{\mathrm{S}}{\substack{\operatorname{Sow~} A \mathrm{AF}-16 \\ \mathrm{NFL}(\mathbb{E X Z})}}$	$\stackrel{1}{27}$	3400	4000	$\begin{aligned} & \hline 6^{\prime} \\ & 8 \\ & 10 \\ & 10^{\prime} \end{aligned}$	$\begin{aligned} & 94 \\ & \hline 53 \\ & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 2.9^{\circ} \\ & 38^{\circ} \\ & 48^{\circ} \\ & 58^{\prime} \end{aligned}$	$\begin{aligned} & \hline 2.3^{\prime} \\ & 3.8^{\prime} \\ & 4.8^{\prime} \\ & 5.8^{\prime} \end{aligned}$	$\begin{aligned} & \hline \mathbf{5}^{\prime} \\ & 7^{\prime} \\ & 9^{\prime} \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.0^{\circ} \\ & 5.2^{\prime} \\ & 6.4^{\prime} \end{aligned}$	$\begin{aligned} & 88 \\ & 4.5 \\ & 27 \\ & 18 \end{aligned}$	$\begin{aligned} & 3.3^{\prime} \\ & 4.5^{\prime} \\ & 5.9 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.8^{2} \\ & 5.0^{\circ} \\ & 6.8^{2} \end{aligned}$	2 3^{\prime} 4^{\prime} 5^{\prime}	$\begin{aligned} & 3.5^{\prime} \\ & 5.2 \\ & 8.9^{\prime} \\ & 3.7^{\prime} \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 47 \\ & 27 \\ & 17 \end{aligned}$	$\begin{aligned} & 4.6^{\prime \prime} \\ & 7.0^{\prime} \\ & 9.6^{\circ} \\ & 11.6^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 3.9 \\ & 4.8^{\prime} \end{aligned}$	3 5 7	$\begin{aligned} & \begin{array}{l} 3.0 \\ 5.0^{\prime} \\ 7.0 \\ 9.0^{\prime} \end{array} \end{aligned}$	$\begin{aligned} & 134 \\ & 48 \\ & 25 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1^{\prime} \\ & 51^{\prime} \\ & 71^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3^{\prime} \\ & 34^{\prime} \\ & 4.8^{\prime} \\ & 6.1^{\prime} \end{aligned}$
$\underset{\substack{\text { 50w } \\ \text { FL (EXN })}}{\mathrm{C}_{2}}$	$\widehat{40^{\circ}}$	1850	4000	$\begin{aligned} & \hline 4 \\ & \hline 6 \\ & 8 \\ & 10^{\prime} \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 51 \\ & 29 \\ & 19 \end{aligned}$	$\begin{aligned} & 29^{\prime} \\ & 44^{\prime} \\ & 58^{\prime} \\ & 73^{\prime} \end{aligned}$	$\begin{aligned} & \hline 2.9^{\prime} \\ & 4.4^{\prime} \\ & 5.8^{\prime} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 29 \\ & 2.0 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 132 \\ & 48 \\ & 25 \\ & 95 \end{aligned}$	$\begin{aligned} & 3.0^{\circ} \\ & 51^{\prime} \\ & 7.1^{\prime} \\ & 9.1 \end{aligned}$	$\begin{aligned} & \hline .5^{\prime} \\ & 4.2^{\prime} \\ & 5.6^{\prime} \\ & \hline . \end{aligned}$	\% ${ }^{\prime \prime}$	$\begin{aligned} & \hline 17^{\prime} \\ & 3.5^{\circ} \\ & 5.2^{2} \\ & \hline .95 \end{aligned}$	$\begin{aligned} & \hline 331 \\ & E 8 \\ & 26 \\ & 14 \\ & \hline \end{aligned}$	$\begin{gathered} 4.8^{\prime} \\ 3.7^{\prime} \\ 34.5 \\ 193^{\prime} \end{gathered}$	$\begin{aligned} & 1.51 \\ & 2.9 \\ & 4.4 \\ & 5.8^{\prime} \end{aligned}$	${ }^{5}$	$\begin{aligned} & 3.0^{\prime} \\ & 9.0^{\prime} \\ & 5.0^{\prime} \\ & 6.0^{\prime} \end{aligned}$	$\begin{aligned} & 73 \\ & 41 \\ & 26 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 50^{\prime} \\ & 6.7 \\ & 34 \\ & 10.1 \end{aligned}$	91 4.1 5.1 6.2 1.2
	$\widehat{M 5}$	1150	4000	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 126 \\ & 46 \\ & 23 \\ & 14 \end{aligned}$	$\begin{aligned} & 3.1^{\circ} \\ & 5.2^{\prime} \\ & 7.4^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 5.2 \\ & 7.3 \\ & 9.4 \end{aligned}$	$\begin{aligned} & \hline{ }^{\prime} \\ & \mathbf{5} \\ & 7 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.9 \\ & 4.0 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 83 \\ & 30 \\ & 15 \\ & 9 \end{aligned}$	$\begin{aligned} & 4.6^{\prime} \\ & 7.5 \\ & 107 \\ & 13.7 \end{aligned}$	$\begin{aligned} & 3.6^{\prime} \\ & 0.0^{\prime} \\ & 8.4 \\ & 10.8^{\prime} \end{aligned}$	1 1^{\prime} 3 7	$\begin{aligned} & 1.7^{\prime} \\ & 3.5^{\prime} \\ & 5.2 \\ & 6.9^{\prime} \end{aligned}$	$\begin{array}{r} \hline 44 \\ 36 \\ 66 \\ 96 \\ \hline \end{array}$	$\begin{aligned} & 22.3^{\prime} \\ & 445^{\prime} \\ & 568^{\circ} \\ & 891^{\prime} \end{aligned}$	$\begin{aligned} & 21 \\ & 42 \\ & 62 \\ & 8.2 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 2 . E^{\prime} \\ & 3 . \\ & 4 E^{\prime} \\ & 50^{\prime} \end{aligned}$	$\begin{aligned} & 102 \\ & 45 \\ & 25 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & 8.6 \\ & 11.4 \\ & 143 \\ & \hline \end{aligned}$	2.9 4.4 5.9 1.9
	$\begin{aligned} & A \\ & 10 \end{aligned}$	14030	4000	$\begin{gathered} 8 \\ 12 \\ 16 \\ 16 \\ 21^{\prime} \end{gathered}$	$\begin{aligned} & 215 \\ & 97 \\ & 55 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{r} 144^{\prime} \\ 21^{\prime} \\ 2.8^{\prime} \\ \hline 3.5^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & 2.11 \\ & 2.1^{\prime} \\ & 2.91 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 10 \\ & 10 \\ & 13^{\prime} \\ & 10^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0^{\prime} \\ & 58^{\prime} \\ & 75^{\prime} \\ & 87 \end{aligned}$	$\begin{aligned} & 136 \\ & \$ 1 \\ & 54 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6^{\circ} \\ & 2.3^{\prime} \\ & 3.0^{\prime} \\ & 3.2 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \\ & 26 \\ & 3.2 \\ & \hline \end{aligned}$	5	$\begin{aligned} & 5.2 \\ & 8.9 \\ & 8.7^{\prime} \\ & 10.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1949 \\ & 109 \\ & 70 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 .^{\prime} \\ & 2.9 \\ & 36^{\prime} \\ & 43^{\prime} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.7 \\ & 21 \\ & \hline \end{aligned}$	5 7 7 9 11 1	$\begin{gathered} 5.0^{\prime} \\ 78^{\prime} \\ 80^{\prime} \\ 11.0^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & 198 \\ & 191 \\ & 61 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8^{\prime} \\ & 2.5 \\ & 3.2 \\ & 3.8^{\prime} \\ & \hline \end{aligned}$	1.2 1.7 25 2.7
$\underset{\substack{\text { FL }}}{\text { CV }}$	\bar{M}	2500	4000	$\begin{aligned} & \hline 1 \\ & 6^{\prime} \\ & 8^{\prime} \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 156 \\ & 59 \\ & 39 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 .^{\prime} \\ & 3 . .^{\prime} \\ & 5.2^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 33^{\prime} \\ & 5.2^{\prime} \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 7 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 179^{\prime} \\ & 229^{\prime} \\ & 40^{\prime} \\ & \hline 5.2 \end{aligned}$	$\begin{aligned} & 180 \\ & 65 \\ & 33 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.71 \\ & 4.5 \\ & 6.31 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 23 \\ & 3.8^{\prime} \\ & 5.3^{\prime} \\ & 6.6^{\prime} \\ & \hline \end{aligned}$	1 2 3 4	$\begin{array}{r} 177^{\prime} \\ 35 \\ 52^{\prime} \\ 69^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 313 \\ & 78 \\ & 35 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.8^{\prime} \\ 75^{\prime} \\ 114^{\prime} \\ \hline 15.2^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 1.3 \mathbf{l}^{\prime} \\ & 2.6^{\prime} \\ & 3.9 \\ & 5.2 \\ & \hline \end{aligned}$	5 	$\begin{aligned} & 3.0^{\prime} \\ & 4.0^{\prime} \\ & 5.0^{\prime} \\ & 6.0^{\prime} \end{aligned}$	$\begin{aligned} & 98 \\ & 55 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 44^{\prime} \\ & 5.8^{\prime} \\ & 7.3^{\prime} \\ & 6.7 \\ & \hline \end{aligned}$	28 37 4.5 55 58
	M_{4}	12,000	4000	$\begin{aligned} & 8 \\ & 17 \\ & 16 \\ & 16 \\ & n \end{aligned}$	$\begin{aligned} & 188 \\ & 83 \\ & 47 \\ & 37 \end{aligned}$	$\begin{aligned} & 2.0^{\circ} \\ & 2.9^{\prime} \\ & 3.9 \\ & 49^{\prime} \end{aligned}$	$\begin{aligned} & 20^{\circ} \\ & 2.9^{\circ} \\ & 39 \\ & 49 \end{aligned}$	7 10 10 13 16^{\prime}	$\begin{aligned} & 4.9 \\ & 5 B^{\prime} \\ & 7.5 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 159 \\ & 78 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.3 \\ & 4.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 2.0^{\prime} \\ & 2.8^{\prime} \\ & 3.5^{\prime} \\ & 4.5^{\prime} \end{aligned}$	3 4 5 5	$\begin{gathered} 5.7^{\prime} \\ 6.5^{\prime} \\ 8.7^{\prime} \\ 10.4^{\prime \prime} \end{gathered}$	$\begin{aligned} & 167 \\ & 94 \\ & 60 \\ & 42 \end{aligned}$	$\begin{aligned} & 3.1^{\prime} \\ & 4.1^{\prime} \\ & 5.1 \\ & 6.2^{\prime} \end{aligned}$	$\begin{aligned} & 1.5^{\prime \prime} \\ & 2.0^{\circ} \\ & 2.5^{\prime} \end{aligned}$	5 7 7 9 11 11	$\begin{gathered} 5.0^{\prime} \\ 7.0^{\prime} \\ 9.0^{\prime} \\ 110^{\prime} \end{gathered}$	$\begin{aligned} & 170 \\ & 87 \\ & 52 \\ & 35 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5^{\prime} \\ & 4 . \mathbf{y}^{\prime} \\ & 5.5 \end{aligned}$	1.7 2.4 3.1 3.8 1.
	$\begin{gathered} 1 \\ 25 \end{gathered}$	4500	4000	$\begin{aligned} & \hline \mathbf{y}^{\prime} \\ & 8 \\ & 10^{\prime} \\ & 12^{\prime} \end{aligned}$	$\begin{aligned} & 136 \\ & 77 \\ & 49 \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 2.7^{\prime} \\ & 3.5 \\ & 4.4^{\prime} \\ & 5.3^{\prime} \end{aligned}$	27 35 4.4 53	5^{\prime} 7 9 11 11	$\begin{aligned} & 29^{\prime} \\ & 4.0^{\prime} \\ & 5.2^{\prime} \\ & 6.4^{\prime} \end{aligned}$	$\begin{aligned} & 727 \\ & 65 \\ & 39 \\ & 26 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 42 \\ & 5.4 \\ & 6.6^{\prime} \end{aligned}$	$\begin{aligned} & 2.6^{\prime} \\ & 3.6^{\prime} \\ & 4.6^{\prime} \\ & 5.6^{\prime} \end{aligned}$	3 4 4 5^{\prime}	$\begin{aligned} & 3.5^{\circ} \\ & 5.2 \\ & 6.9 \\ & 8.7 \\ & \hline \end{aligned}$	$\begin{gathered} 153 \\ 58 \\ 38 \\ 38 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & \hline .2 .2 \\ & 6.2^{\prime} \\ & 83^{\prime} \\ & 10.4^{\prime} \end{aligned}$	$\begin{aligned} & 188^{\prime} \\ & 2.7^{\prime} \\ & 3.5 \\ & 4.4 \end{aligned}$	3 5^{\prime} 7^{\prime} 9^{\prime}	$\begin{aligned} & \hline 30^{\prime} \\ & 5.0^{\prime} \\ & 7.0^{\prime} \\ & 9 . \mathbf{n}^{\prime} \end{aligned}$	192 69 35 21	2.88^{\prime} 4.7 8.5 8.4 8.4	1.9 3.1 4.4 5.6
$\underset{\substack{\text { 75WMR } \\ \text { FLEYC: }}}{\sum=}$	$\bigwedge_{42^{\prime}}$	2100	4000	$\begin{aligned} & 4 \\ & 6^{\prime} \\ & 8^{\prime} \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 131 \\ & \hline 18 \\ & 33 \\ & 21 \end{aligned}$	$\begin{aligned} & 3.1^{\prime} \\ & 4.6^{\prime} \\ & 6.1^{\prime} \end{aligned}$	31^{\prime} 4.6 6.1^{\prime} 7.7	3' 5^{\prime} 7^{\prime} 9 9	$\begin{aligned} & 1.7^{\prime} \\ & 2.5^{\prime} \\ & 4.0^{\prime} \\ & 52^{\prime} \end{aligned}$	$\begin{aligned} & 952 \\ & 55 \\ & 28 \\ & 17 \end{aligned}$	$\begin{aligned} & 32^{\prime} \\ & 5 .{ }^{\prime} \\ & 75 \\ & 97^{\prime} \end{aligned}$	$\begin{aligned} & \hline 27^{\prime} \\ & 4.4^{\prime} \\ & 6.2^{\prime} \\ & 6 . \end{aligned}$	1' z^{\prime} 3	$\begin{aligned} & 17 y^{\prime} \\ & 3.5^{\prime} \\ & 5.2 . \end{aligned}$		$\begin{gathered} 5.5^{\circ} \\ 19.0^{\prime} \\ 16.5^{\circ} \\ 22.3^{\prime} \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.1 \\ & 4 . E^{\prime} \\ & 6.1 \end{aligned}$	3 4 5 5 5	$\begin{aligned} & \hline 3.0^{\prime} \\ & 40^{\prime} \\ & 5.0^{\prime} \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 40 \\ & 30 \\ & 21 \end{aligned}$	5.4 7.2 9.0 10.8	3.3 4.3 5.4 6.5

309X LytePoints 3 3/4"

Adjustable Slot

(FC) is isitial fortcandes at center of beam. Beam: length (L) and beam wadth (W) are to whe ee the canderower is red scad to 50% of senter bee in carillepower.
CBCP is center beam candiepowe
(C) is distance to the center of the beal availabilty and performance

Larip data shown is typical, ard is lused cri bare lamp photome:rics. Contzct lamp manuac:uress tor

Sean Spread zelp

0° AIMING ANGLE

30° AIMING ANGLE
D C FC L W

30° AlMING ANGLE

45 AIMING ANGLE

MR-16 HALOGEN LOW VOLTAGE BI-PIN LAMPS WITH ALUMINIZED (NON-DICHRDIC) REFLECTORS

$\underset{\substack{\text { SOMP } \\ \text { NSR }}}{\frac{M}{2}}$	$A_{11^{\circ}}$	10,50]	3500
	$\bigwedge_{25^{\circ}}$	3000	3500
$\sum_{50 \mathrm{MB}}^{\mathrm{F}} 18$	A	1900	3500

(Signify

